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Summer 2010 Flight Campaign (I)

•
 

5 flights in July 2010 onboard NASA’s DC-8 
Airborne Laboratory

−
 

July 8: California Central Valley

−
 

July 9:  California Mojave Desert / Needles

−
 

July 12: Nevada Railroad Valley

−
 

July 14: Pacific Ocean off California Coast

−
 

July 18: Oklahoma ARM site

•
 

Stable overpasses at various altitudes between 8 
KFt

 
and 40 KFt



Summer 2010 Flight Campaign (II)

•

 

Measure backscattered return in offline and online channels at 
50 MHz rate
−

 

Data collection rate is ~ 0.5 TB / hour
•

 

Inertial Navigation System (INS) / Global Positioning System 
(GPS)
−

 

Aircraft altitude, Aircraft attitude, Aircraft velocity
•

 

DC-8 Research Environment for Vehicle-Embedded Analysis 
on Linux (REVEAL)
−

 

Aircraft altitude, Aircraft attitude, Aircraft velocity
−

 

Atmospheric conditions (temperature, pressure, relative 
humidity)

•

 

Daily radiosonde

 

launched by NASA Langley Research Center 
(LaRC) near center of flight path
−

 

Vertical profile of atmospheric conditions (temperature, 
pressure, relative humidity)

•

 

In situ CO2

 

sensor (Picarro) available for calibration



Ground Data Processing for 
Summer 2010 Flight Campaign (I)

•

 

Frequency domain processing with 50 MHz samples

•

 

16K-point FFTs (320 s time slice)

•

 

Periodograms with ~3 KHz resolution

•

 

Accumulate periodograms to desired integration time

•

 

Detect return signal and estimate heterodyne frequency and power

•

 

Heterodyne Intermediate Frequency signals appear in 8.5 -

 

19.5 MHz 
window
–

 

Based on aircraft ground speed and off-nadir point-ahead angle



Ground Data Processing for 
Summer 2010 Flight Campaign (I)

Need to carefully manage integration times.
The good:  Long integration time improves signal to noise ratio
The bad:

 

Long integration means more sensitivity to platform instability
•Aircraft altitude and attitude
•Atmospheric conditions (e.g., pressure, temperature, relative humidity)
•Ground elevation and reflectance
The ugly:  Quality control filters used to detect and handle realistic flight 
conditions: clouds, excessive turbulence, instrument anomalies, etc.



Ground Data Processing for 
Summer 2010 Flight Campaign (II)

•

 

Our algorithm uses both short and long integration times
−Detect signal return and estimate heterodyne frequency over 
short time periods (e.g., 40 ms)
−Estimate return power over longer time periods (e.g., 5 s)
−Allows long integration times even during periods of aircraft 
attitude variability
•

 

Laser range to ground correction compensates for aircraft 
attitude variability
•

 

Quality control filters eliminate data segments that may 
introduce bias
•

 

Clouds in the field of view
•

 

Excessive turbulence
•

 

Momentary loss of laser lock



Data Processing Flow

Collect data: 2 channels, 
50 MHz, 14 bit/channel

Quality control filter:  Detect 
and filter for momentary loss 

of laser lock
Compute 16k periodograms 

(~320 s)

Short periodogram 
summation, e.g., 40 msFlatten noise floorDetermine offline and online 

return signal peak frequencies

Shift successive 40 ms 
periodograms to align return 

signal peak frequencies

Quality control filter: 
Frequency shifts must be 

below preset limit

Long periodogram 
summation, e.g., 5 s

Calculate offline and online 
signal power 

Normalize for offline and 
online laser power and 

system gain fluctuations

Adjust for laser range to 
ground fluctuations

Calculate ln(ratio) values and 
delta-DAOD for each 

atmospheric layer

Quality control filter: Power 
cannot be more than 2

 

below overpass average

Compare with forward model 
to obtain column [CO2]



Periodogram Summation Strategy

•

 

Use short integration times, e.g., 40 ms, for return signal peak

 detection and heterodyne frequency estimation

•

 

Use long integration times, e.g., 5 s, for return power estimation

–

 

Compute enough (N) short periodogram summations to 
produce a long periodogram summation

–

 

Detect return signal peaks and estimate heterodyne 
frequency in each short periodogram summation

–

 

Compute the mean heterodyne frequency over the N short 
periodogram summations and shift them all so that their 
signal peaks align at the mean.

–

 

Add up the shifted and aligned short periodogram 
summations to produce a long periodogram summation



Noise Floor Flattening

•

 

The 40 KFt

 

altitude is processed to compute a noise floor for each channel
–

 

No significant signal return at this altitude
•

 

Smooth and then jointly normalize noise floors so online value at 15 MHz = 1
•

 

Remove noise floor component from a periodogram

 

by dividing by the smoothed 
and normalized noise floor

–

 

Flattens the periodogram

 

baseline
–

 

Makes noise level uniform across the spectrum



Peak Detection

•
 

Automated matched filter peak detection

•
 

Return signal expected in window from 8.5 MHz and 19.5 
MHz

•
 

Must distinguish noise spike from true peak

–
 

Especially important in low signal to noise conditions

•
 

Matched filter detection

–
 

We know the typical signal width and shape

–
 

We search for a group of sample points that exceed a 
preset multiple of the root mean square noise level

–
 

Thresholds set based on known signal width and shape



Return Power Estimation

•
 

Compute the long periodogram summation 
for each channel

•
 

Flatten to remove noise floor
•

 
Subtract baseline level (offset from 0)

•
 

Compute area under the curve in the window 
from 8.5 MHz to 19.5 MHz

•
 

Scale for laser power fluctuations as a 
function of time



Range to Ground Analysis (I)

•
 

Aircraft latitude, longitude, altitude, attitude, 
and speed at 1 second intervals from 
REVEAL

•
 

Calibrate pitch angle using Doppler equation

–
 

Depends on return signal frequency and 
aircraft speed

•
 

Ground elevation relative to WGS-84 from 1 
arc second resolution SRTM “finished”

 
DEM 

(version 2.1)

–
 

No co-boresighted laser altimeter used



Range to Ground Analysis (II)

Slant path computation:
(1) Nadir vector from laser 
transmitter to ground
(2) Quaternion rotation 
based on aircraft attitude
(3) Extend rotated vector to 
intersect with SRTM 
topography 12

3



Range to Ground Analysis (III)

Mojave/Needles flight track had significant ground elevation variation, 
which was effectively handled by our algorithm: 
> 800 m elevation range!



Quality Control Filters (I)

•

 

We account for normal variations in:
–

 

Instrument
•

 

Laser power
–

 

Aircraft
•

 

Altitude
•

 

Attitude
•

 

Velocity
–

 

Atmosphere
•

 

Temperature
•

 

Pressure
•

 

Relative Humidity
–

 

Ground
•

 

Elevation
•

 

Reflectance
•

 

Quality control filters discard short anomalous time periods due

 

to, for example:
–

 

Clouds in the field of view
–

 

Excessive turbulance
–

 

Momentary instrument anomalies



Quality Control Filters (II)

•

 

Laser power analyzed at ~10 ms resolution to automatically 
detect and discard time periods of momentary loss of laser lock
–

 

Detected by abnormally large values of the first derivative of 
laser power with respect to time

–

 

Can make it difficult or impossible to detect the online return 
signal

•

 

Return signal analyzed on short time scales (e.g., 40 ms) to 
automatically detect and discard time periods when the 
heterodyne frequency drifts excessively (e.g., > 2 MHz) within a

 longer time period (e.g., 5 s).
•

 

Return power analyzed on longer time scales (e.g., 5 s) to 
automatically detect and discard time periods when power in 
either channel drops more than 2 

 

below the overpass 
average.



Forward Modelling

•

 

AER’s Line By Line Radiative Transfer Model (LBLRTM) used for 
forward modelling

–

 

Define up to 200 atmosphere layer boundaries

–

 

Pressure, temperature, and relative humidity from REVEAL or 
radiosondes assigned to each layer

•

 

Spectroscopic line parameters modified from HITRAN

–

 

Incorporates updates to 1.57 and 2.05 micron bands based on 
OCO-supported spectroscopic studies by Geoffrey Toon and Linda 
Brown

–

 

New studies by Lance Christensen of the R(30) line profile using

 
tunable semiconductor laser

•

 

Deviations from Voigt identified in the far wing region, including 
the band where the offline laser frequency is found.

•

 

Enables us to put an upper bound on any bias that may be due 
to imperfect line shape in the forward model.



Column CO2

 

Retrieval

•

 

Differential Absorption Optical Depth is related to both transmittance 
and return power:

DAOD = ln

 

(off

 

/ on) = ½ ln (Poff

 

/ Pon

 

)

•

 

If we assume a fixed column CO2

 

density, D, in the forward model, then 
our column CO2 as a function of time for a CO2LAS overpass is:

CO2

 

(t) = D * ln

 

(Poff

 

/ Pon

 

) / (2 * ln

 

(off

 

/ on) )

•

 

Convert to CO2

 

as function of along track distance using aircraft 
velocity from REVEAL

Column CO2 retrieval for California Central Valley 8.5 Kft overpass 



Summary

•

 

Data processing algorithm updated to accomplish consistent column 
CO2 retrieval from the Summer 2010 flight campaign

•

 

We allow for integration times of arbitrary length to balance the need for:

–

 

High signal to noise ratio

–

 

Platform stability

•

 

We correct for small but significant fluctuations in the laser power

•

 

Range to ground analysis corrects for fluctuations in aircraft altitude, 
pitch, roll, true heading, and ground elevations

–

 

DEM from SRTM eliminates need for co-boresighted

 

laser altimeter

•

 

Quality control filters eliminate bias due to short-lived anomalous 
conditions

•

 

Comparison with forward model (LBLRTM) to rapidly produce CO2

 

time 
series for analysis.
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