Active Stabilization of Multi-THz Bandwidth Chirp Lasers for Precision Metrology

Zeb W. Barber1, Randy R. Reibel2, Christoffer Renner1, Steven Crouch1, Nathan J. Greenfield2, Trenton J. Berg2, Brant M. Kaylor2, and Peter A. Roos2

1 The Spectrum Lab, Montana State University, PO Box 173510, Bozeman, MT 59717
2 Bridger Photonics Inc., 2310 University Way Bldg 4-4, Bozeman, MT 59715 USA

barber@spectrum.montana.edu

1. Introduction

Frequency Modulated Continuous Wave (FMCW) ladar (i.e. coherent chirped ladar, swept wavelength interferometry, optical frequency domain reflectometry, et al.) is an attractive technique for many applications including optical coherence tomography, synthetic aperture imaging ladar (SAIL, or SAL)[1], non-contact precision metrology, and 3D imaging. Most of FMCW's advantages accrue from the use of heterodyne mixing with a local sample of the linearly chirped waveform for simultaneous demodulation and detection of the ladar return. After digitizing, the range profile can be obtained through a Fast Fourier Transform (FFT). This technique allows high sensitivity shot noise limited detection, a great reduction of the required IF detection bandwidth, and increased dynamic range through sampling of the ladar return field with relatively low bandwidth high dynamic range analog to digital converters (ADC's).

Although dominant in the RF and Microwave domains, FMCW ladar has been held back in the optical domain due to a lack of suitable tunable laser sources. Commercial tunable diode laser sources in the telecom bands allow multi-THz continuous frequency sweeps, which should in provide range resolutions on the ten micron scale, but in general are not sufficiently linear or stable to take advantage of the full resolution their bandwidth would provide. To achieve their potential resolution, ultra-wideband FMCW ladar systems generally require a reference delay or interferometer (usually fiber based) to provide a simultaneous calibration of the laser frequency sweep to compensate the nonlinearity of the chirp by providing triggering signals to the analog-to-digital converter (ADC)[2] or in post-processing of a regular time spaced samples[3].

The Spectrum Lab at Montana State University and Bridger Photonics Inc. have utilized the interferometric signal as an error signal for an active servo loop that applies electronic feedback to the laser frequency thereby actively stabilizing the frequency chirp of the laser[4]-[6]. By actively stabilizing the laser chirp, the range compression can be accomplished by a simple FFT of the time sampled heterodyne signal. This paper describes the techniques utilized for active stabilization of multi-THz chirps, the characterization of the resulting chirp linearity, and demonstrations utilizing the chirps for precision metrology applications.

2. Chirp Stabilization

FMCW ladar utilizes swept frequency waveforms that when coupled with coherent detection yields a range dependent heterodyne signal or "beat note" of frequency

$$f_{	ext{beat}} = \kappa f_{\tau}$$

where \(f_{\tau}\) is the round trip delay to the target and the chirp rate, \(\kappa\), is the derivative of the instantaneous optical frequency (see Figure 1). If the chirp rate is not constant (i.e. a nonlinear or unstable chirp) the frequency of the beat note will vary and the Fourier transform of the time domain data will not fully compress a point return to a single frequency and some method must be used to either compensate or stabilize the chirp.

To diagnose the chirp nonlinearities a fiber based interferometer in the Mach-Zhender geometry is used as a reference. An acousto-
optic modulator is placed in one path of the interferometer to shift the interferometric signal away from DC allowing positive and negative shift frequencies (and thus positive or negative chirp rates) to be measured. The signal from the interferometer, whose frequency is proportional to the chirp rate, is then compared to a reference frequency that is chosen to correspond to the desired chirp rate. The phase comparison is performed with a digital phase detector (DPD), which has the feature of also determining the sign of the absolute phase difference. The output of the (DPD) is then filter and amplified with servo amplifiers which can apply feedback to multiple frequency actuators of the laser including laser diode current, cavity length, and the angle of the external grating.

Figure 2 shows the resulting improvement in the linearity of the chirp from a commercial external cavity diode laser (Thorlabs, PicoD) that is continuously tunable from 1520nm to 1620nm. In this case, a chirp of about 5 THz bandwidth at a chirp rate of 5 THz/s had about 600 MHz peak-to-peak variations from linearity before the active feedback was applied and after the variations were reduced to about 170 kHz rms. When used to perform a ranging measurement using no post processing or other compensation other than the active feedback system, the resulting range return off a single delay was reduced from a peak width of ~400 mm without stabilization to a nearly Fourier limited peak width of 47 µm with stabilization.

Using this technique, Bridger Photonics Inc. and Montana State University have successfully stabilized multiple frequency swept lasers including MEM’s based external cavity diode lasers (LUNA, Phoenix) and even standard telecom distributed feedback (DFB) lasers. The different types of lasers each have tradeoffs in terms of tuning bandwidth, tuning speed, power, and linewidth.

There are several advantages of this active stabilization technique over the techniques that use the reference interferometer either for post processed based compensation, or for triggering of ADC’s. First, because the phase of the interferometric beat note is stabilized (not just the frequency) the feedback stabilizes instantaneous frequency of the laser not just the chirp rate. This has the effect of narrowing the linewidth of the laser, as demonstrated by locking the laser at a chirp rate of zero and comparing against a narrow linewidth single frequency fiber laser. It also has the effect of returning the FMCW signal power to the carrier, improving the pre-processed SNR of the detection (see Figure 3). Second, once the chirp laser has been stabilized, FMCW ladar measurements are simple and efficient requiring only a single channel ADC and a single FFT, with no other post-processing steps required. In addition, the post-processing algorithms or the triggering circuits do not have to be modified if one desires to change the center of the range window or the sample rate of the ADC. Third, the chirp stabilization does not preclude using the post processing compensation methods or the ADC triggering methods on top of the stabilized chirp laser. As with any active feedback technique limited feedback gain and bandwidth prevents the servo amplifier from completely suppressing all fluctuations, so further compensation can help.

3. Ultra-broadband Chirp Lasers for Metrology
Barber

The resolution of any time-of-flight ranging system is governed by the bandwidth of the transmitted waveforms as \(\Delta R = \frac{c}{2B} \), where \(\Delta R \) is the range resolution defined in analogy to the spatial Rayleigh criterion as the ability to distinguish two point returns at the half power points, \(c \) is the speed of light, and \(B \) is the bandwidth. Range precision, defined as the minimum detectable change in range to a single point target, depends on the range resolution as a starting point but also depends on the signal-to-noise ratio (SNR) of the measurement. As SNR is highly specific to the measurement system, range resolution (or bandwidth) is the best metric to make apples-to-apples comparisons of different ranging techniques.

The multi-THz actively stabilized chirp lasers have great promise for precision ranging applications including metrology. By starting with a range resolution of only several tens of microns, an multi-THz FMCW metrology system only has to achieve an SNR of 20 dB to achieve ranging precisions of less 10 µm. This level of SNR should be achievable under most situations, including non-cooperative targets at moderate ranges. For cooperative (i.e. retro-reflective) targets our ranging demonstrations regularly show signals above the detection noise floor of 60 to 90 dB or more. This level of SNR has allowed the demonstration of range precisions as low as 2.8 nm (measurement of the spacing of two range peaks (front and back) of a 637 µm thick optically transparent wafer (see Figure 4)). In general, for measuring ranges in air the precisions are limited by atmospheric turbulence and average index of refraction fluctuations.

In addition to achieving good range precisions, for metrology applications the measurements must be stable and traceable to the SI meter. To assure accuracy of the measurements of the FMCW ladar system the chirp rate must be well calibrated. We have demonstrated calibration accuracy on the part per million level can be obtained by calibrating the chirp rate to a molecular gas absorption references such as Acetylene and Hydrogen Cyanide, which is generally sufficient for metrology applications in air. For more accurate calibrations and characterization of the chirp, we performed comparisons of the ultra-wideband actively stabilized chirp laser against an accurate optical frequency comb at NIST in Boulder, CO. This characterization showed that after removing low order nonlinearities due
to dispersion of the reference interferometer[7],
the chirp laser showed a linearity of less than
60 kHz for a 5 THz sweep and a calibration of
the chirp rate 1.5×10^{-8} fractionally[8].

Figure 7. Calibration of fiber stabilized chirp laser against
an accurate fiber based optical frequency comb [8].

3. Conclusions

FMCW ladar using actively stabilized chirp
lasers has many advantages for precision
ladar applications. Active stabilization of the
linear frequency sweep allows one to access
the unmatched range resolution (~50 µm)
provided by multi-THz bandwidth tunable laser
sources in the telecom region at long ranges,
large range windows, and without the need for
computationally expensive post-processing.
The coherent detection technique also allows
very large signal-to-noise and dynamic range,
which aids in the determination of distances with
precisions at a small fraction of a
wavelength.

The resolution and precision of these new
stabilized FMCW sources opens up new
applications for ladar in area of precision
length metrology. In addition, by removing the
need for complicated post-processing FMCW
ladar becomes more suitable for
computationally hungry 2D and 3D imaging
applications such as synthetic aperture
imaging ladar.

Some of the disadvantages of this technique is
the lack of long coherence length, broadband
(> THz) and rapidly tunable (10^4 chirp rates)
lasers. The lack of rapidly tunable
sources makes the ranging system more
susceptible to Doppler related shifts and vibrations. However, pairing the FMCW ladar
system with a co-aligned CW interferometer to
provide vibration compensation may be possible.

In this paper, we have described how multi-
THz chirped lasers can be actively stabilized to
stable fiber delay lines, and how those sources
can be utilized for precision FMCW ladar and
metrology.

4. Acknowledgements

The authors would like to acknowledge
Stephen Dunn of WaveSource Inc. in
Whitefish, MT for providing the complex optic
for surface profile demonstrations. We would
also acknowledge Fabrizio Giorgetta, Ian
Coddington, and Nate Newbury of the Opto-
Electronics Division at NIST. MSU also
acknowledges support of NSF GOALI/MCME
grant #1031211.

5. References

Dickinson, D.A. Kozlowski, N.J. Marechal,
and T.J. Wright, “Synthetic-aperture imaging
laser radar: laboratory demonstration and signal processing,”
of sampling errors due to laser tuning rate
fluctuations in swept-wavelength interferometry,” Optics
“Suppression of nonlinear frequency sweep in an optical
frequency-domain reflectometer by use of Hilbert
Berg, Z.W. Barber, and W.R. Babbitt,
“Ultra-broadband optical chirp linearization
for precision metrological applications,”
Mossberg, “Laser frequency stabilization
by means of optical self-heterodyne beat-
frequency control,” Optics Letters, vol. 23,
and V. Leyva, AmnonYariv, “Precise control of
broadband frequency chirpsusing optoelectronic feedback,”
[7] Z.W. Barber, W.R. Babbitt, B. Kaylor,
R.R. Reibel, and P.A. Roos, “Accuracy of active
chirp linearization for broadbandfrequency modulated
continuous wave ladar,” Applied Optics,
Coddington, J.R. Dahl, R.R. Reibel, N.
Greenfield, and N.R. Newbury,
“Characterization of an actively linearized
ultrabroadband chirped laser with a fiber-
laser optical frequency comb,” Optics